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PREFACE

There are no mesoscale experts --- only good meteorologists,
intent on improving their understanding of the atmosphere, and
those content to bilindly follow guidance. This publication is an
attempt to organize our knowledge about the mesoscale and permit
it to be periodically updated. We suggest that this Technical
Memo be unstapled and placed in a loose leaf binder. Past and
future Technical Attachments, copies of articles, etc. would be
filed with the major heading to which they pertain.
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MESOSCALE FORECASTING TOPICS
Hugh M. Stone

Eastern Region Headquarters
National Weather Service, NOAA
Garden City, New York

I. INTRODUCTION

Some progress has been made over the last few years in our
understanding of mesoscale phenomena and in our ability to analyze
the atmosphere to detect favorable environments for the
development of these phenomena. Extreme weather events, e.g..
severe weather and very heavy rainfall, are small scale events
that may occur with no apparent relation to synoptic scale

patterns; but more frequently they are acsociated with some large

scale dynamic forcing.

Synoptic scale weather for periods in excess of 12 hours is
now handled fairly well by existing dynamical and statistical
models, but current models do not perform well for the first 12
hours of the forecast period. Dynamical models are not capabie of
handling small mesoscale phenomena, such as convection, due to
their relatively coarse grids, lack of proper initial data for
small scale phenomena, and incomplete physics.

Mesoscale models are currently being developed which may be
helpful to the forecaster, but their operational implementation is
still in the distant future. Lack of appropriate initial data and
the large computer capability needed to run them present serious
problems. For the present, the forecasters most useful
contribution appears to lie in improving the near term small scale
forecast through the frequent monitoring of data with the aid of
various mescanalysis programs.

Although mesoscale phenomena are important at all times of
the year, most of the techniques that we now have available are
.primarily useful in forecasting warm season convection, severe
weather, and heavy rainfall. The warm season precipitation
forecast is generally more difficult than the cool season, due to
the difficulty in pinpointing areas that will be affected by
convection. The common summertime forecast of "scattered showers"
is evidence of this difficulty; the forecast would be more useful
if higher probabilities couid be specified over a 1Timited area.

- Flash flood forecasting continues to be a serious problem due to
the difficulty in specifying heavy rainfall areas. Some mesoscale
techniques will be presented here, which are helpful in dealing
with these problems, but of course, they are not the complete
answer, and considerable research is still needed in understanding
these phenomena. Meso-techniques applicable to wintertime
situations will also be given where appropriate.
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II. TECHNIQUES
i, Surface Moisture Convergence

Moisture convergence usually increases one to two hours prior
to the beginning of convection. It is most useful for locating
areas where the first convection of the day is 1ikely to begin.
After convection has reached the mature stage, the initial
moisture convergence is usually replaced by divergence and new
convergence develops along outflow boundaries caused by the
initial convection. After convection has begun in several areas,
new convection is mostly likely to begin, where ocutflow boundaries
intersect, since this is the area where convergence is apt to be
strongest. As convection becomes more widespread, the moisture
convergence pattern may become very complex and difficult to
interpret. '

Surface moisture convergence and its time change over a
specified number of hours can be obtained from the Southern Region
Mesoanalysis Programs {(Bothwell, 1985). These products must be
produced hourly to be of maximum value, since the lead time
between increase in moisture convergence and the beginning of
convection is short, usually around two hours.

This technique is useful during Spring and Summer, when
convection is surface based, i.e., parcels near the ground are
heated sufficiently to begin spontaneous convection. During the
cool season, a stable layer is usually present near the surface,
and although convection may stiil occur due to dynamic forcing.,
the ascending parcels do not originate from the surface, but from
some upper level.

Cases have been observed where convection was well related to
convergence at the 850mb level and had no relationship at ail to
surface moisture convergence. Unfortunately, upper level
convergence can presently be computed only twice per day from the
radiosonde observations. The lack of time and space resolution fis
a problem that will eventualily be solved when wind profilers
become available. Upper Tevel convergence at any of the mandatory
levels may be computed from the Western Region mesoanalysis
programs (Spry and Anderson, 1981).
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2. Upper Level Divergence

Divergence fields in the upper troposphere can also be useful
to the forecaster. These fields, although available only twice
per day, change more slowly than surface convergence fields.
Convection that begins under a pre-existing upper level divergence
field will frequently be more intense and extend to higher levels
than convection beginning under upper level convergence.

Upper level divergence can also be caused by strong
convection (Maddox, 1980}, A well developed meso-scale convective
complex (MCC) has a strong effect on the upper level wind field,
which may be noticeable even without doing the divergence
computation.
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3. Jet Streaks

Jet streaks refer to the isotach pattern embedded in the jet
stream. They are associated with a distinctive patiern of upper
level divergence. Air parcels entering the jet must accelerate.
Energy considerations require that parcels move toward lower
heights on a constant pressure surface in order to accelerate.
This means that divergence will occur in the right entrance region
of the jet and convergence on the left. At the exit of the jet,
air parcels decelerate moving toward higher heights, with
divergence developing in the left exit region and convergence on
the right. This pattern is illustrated in Fig. 1.

The relative position of the jet streak to a surface front,
will either tend to suppress convection or stimulate it.
Intersection of the exit of the jet - with a surface front creates
favorable conditions at and to the north of the front, as shown 1in
Fig. 2. This process is described in more detail by Bluestein
(1984). A simplified review of a part of the Bluestein paper may
be found in {(Stone, 1984).
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Fig. 1. Schematic representation of the ageostrophic
motions (heavy arrrows) and associated convergence (CON)
and divergence (DIV) patterns in the vicinity of a
straight Jjet streak (from Bluestein, 1984).
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Fig. 2. Vertically coupled upper and lower tropospheric
jet front systems and their associated secondary
circulations. (a) Upper Jet front exit situated above
the surface front and low level jet. Line BB', '
projectfion for (b). (b) Cross section along line BB' of
(a). (from Bluestein, 1984).
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4, Boundaries and Local Circulations’

Convection tends to begin on pre-existing boundaries, such as
frontal surfaces, lake or sea breeze boundaries, the edge of cloud
and/or fog areas, and outflow boundaries formed by previous
convection. These boundaries are almost always associated with
some surface convergence and provide favorable conditions for the
injtiation of convection. Convective cells that have formed
elsewhere frequently increase in intensity as the cell moves
across a boundary.

In mountainous terrain, the first convection of the day
usuaily begins on the leeward side of mountain ridges. This can
be explained by surface heating causing upslope winas which form
convergence zones mainly on the lee side of the mountains. The
details of this process are given by Barker and Banta (1984).
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5. Stability

Large scale vertical motions in the atmosphere are the result
of dynamical forcing, two of the most important being differential
vorticity advection and thermal advection. The response of the
atmosphere to the imposed forcing depends on the thermodynamic
instability. The same forcing applied to an unstable air mass
will produce stronger vertical motions than in a stable air mass.
In the absence of any dynamical forcing small scale vertical
motions associated with convection may begin spontaneously when
the atmosphere becomes sufficiently unstabie. In the summer this
instability is usually generated by surface heating.

The energy index (EI) is a fairly good measure of stability
and has been shown to have a somewhat higher correlation with
developing convection than any of the standard indices such as
1ifted, K, or Showalter index (Stone 1985, 1986). With stagnant
. conditions, 1ittle or no upper level advection and no significant
dynamical forcing, convection usually begins in the region of
maximum EI instability; this is the situation for summertime air
mass thunderstorms. When there is moderate upper level advection
with Tittle dynamical forcings convection frequently begins in the
downstream gradient of the EI field. If significant dynamic
forcing 1s present, convection is 1ikely to begin in the unstable
area where forcing is greatest, not necessarily where maximum
instability exists.

"No stability index should ever replace a visual examination
of the plotted sounding, at which time, subjective estimates may
be made of how the sounding will change with time through the day.
Differential advection of temperature and large scale vertical
motions should be considered as well as potential surface heating.

Yertical distribution of positive and negative energy areas
for an ascending parcel is another factor to consider. Although a
large positive area may exist in the upper troposphere, a
sufficiently large negative area in the lower troposphere may
effectively inhibit the development of convection. On the other
hand, if large positive area exists and the Tower capping
stability can be released at just a few points, severe weather is
a good possibility.
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6. Surface Yorticity

Surface relative vorticity and surface convergence patterns
are frequently similar in the summer, convergence areas associated
with cyclonic vorticity and divergence areas with anticyclonic
vorticity (Ulanski and Garstang, 1978). Since all stations report
wind, but not all report pressure, developing mesocyclones can
sometimes be detected in the vorticity field prior to the pressure
field.

The vorticity flield is sometimes useful in winter for
detecting lee cyclogenesis, which may appear in the vorticity
field prior to it appearance in the pressure field. Winter
cyclones approaching the Appalachians from the west frequently do
not cross the mountains in a continuous manner, but a new cyclone
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necessary Iin providing a good forecast east of the Appalachians.
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7. Uses of the Hodograph

Convection may be categorized in three types: short-lived
single cells, muiticellss, and supercells. Recent research
(Weisman and Klemp, 1984) indicates that the hodograph is useful
in determining the type of convection that may develop as well as
the motion that the convection is 1ikely to develop. Both of
these factors are useful in forecasting severe weather and heavy
precipitation (flash floods).

Convective storm type and severity depend strongly on the
environmental conditions in which the storm grows. Thermodynamic
fnstability controls the storm strength, since it controls the
vertical accelerations of the air parcels. Vertical wind shear
controls the type of convection that will develop.

Short-lived single cell storms develop in situations where
there is Tittle vertical wind shear. As the storm develops the
downdraft spreads out equally around the original storm, cutting
it off from the warm moist unstable air needed to sustain _
convection.

Multicell storms develop with moderate vertical wind shear.
In this case the outflow produces a non-symmetric surface
convergence pattern with the strongest convergence downshear from
the original cell. New cells growing in this convergence zone
will move in the same direction as the gust front increasing the
time over which the new celis may feed on the warm unstable air
ahead of the cutfiow.

Supercell]l storms evolve with stronger shear accompanied by a
veering of the shear vector in the lowest 1 or 2 kilometers. This
causes dynamically induced non-hydrostatic vertical pressure
gradients to develop on the right flank of the storm, which
accelerates surface air upwards and causes the storm to deviate to
the right of the mean wind enabling it to feed on the warm moist
air for a longer period of time.

Some typical hodographs for the three storm types are shown
in Fig. 3. taken from Weisman and Klemp (1984). The wind shear in
the lowest 6 kilometers of the atmosphere is most important for
determining storm type. The most important factor in developing a
right moving storm is the low level veering of the wind shear
vector.,

Severe weather is not confined to the supercell type storm,
but a supercell is more 1ikely to produce severe weather than a
multicell storm and the worst severe weather does occur with
supercell storms. A sufficient degree of thermodynamic
instability {is needed to produce severe weather {in addition to the
proper wind shear structure. The two effects may be combined in a
parameter called the Bulk Richardson Number (BRN), which is the |
ratio of the instability (positive energy area) to the wind shear
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factor. Fig. 4. from Weisman and Kliemp (1984) shows the range of
BRN over which supercell and multistorm cells are expected to
develop. However, the relationship shown in Fig. 4 did not verify
well in a preliminary test of convection in the eastern United
States during 1986. Further studies of BRN should be complieted,
before its use is recommended in forecasting. Both stability and
wind shear should be considered in forecasting convection, but it
may be desireable to keep them seperate. Stability and plotted
hodographs are available from the CONVECT applications program
(Stone, 1986).

Locally heavy rains which may lead to flash flooding are
frequently associated with multicell convection. . The usual
pattern for locally heavy rain is for a series of convective cells
to generate and slowly move across the area. The most vigorous
updrafts and heaviest rains are generally present in newly formed
convective cells. It is possible for the centroid of a convective
storm complex to show movement, while the most active part, where
new cell growth is occuring to remain nearly stationary. 1In this
case, new cell development occurs on the right rear filank of the
storm complex. The hodograph, Fig. 5.5 typically shows an
easterly component at the surface with veering of the shear vector
in the lowest 1 to 2 kilometers.

A typical synoptic situation with thunderstorms forming along
a warm frontal boundary is shown in Fig. 6. from Chappell (1984),
Cells move northeastward in the colder air with their outflow
boundary reinforcing the front and new cells form on the right
rear flank of the storm complex. The net effect is a nearly
stationary heavy rain area drifting eastward along the frontal
boundary.




various storm types. 'S' denotes supercell and 'M!
multicell storms. 'TR' denotes storms in a trecpical
atmosphere. Observed 'S' and 'M' storms shown are from
Midwest area. (adapted from Weisman and Klemp, 1984),

| o 50 100 " 500 1000 5000
] T T J 1T T T [ TTTT] T
- Model |¢-8upercells]
Results |&~ Multicells >
S
Observed S S
Supercells S Sq SS
S
TR
Observed TR TR TR
Multicells M M M M
and Misc.
| L L el i Ll aral L1 ]
| 10 50 100 500 1000 5000
R
Fig. 4. Relationship of Bulk Richardson Number to



I%0

2km Hhm Gkm
- 2
[-]
090 — =1 270
360°
Fig. 5.

Schematic representation of hodograph capable of

producing stationary convection with locally heavy

rainfalil.

New cells develop in same location on right

rear flank of storm system.



Sy
\:\9 e, —_—— ~—
PROPAGATION ™
————
S T~ — —
e
b —

THERMAL
AXIS

MOIST
TONGUE

[/LOW-LEVEL
lW‘IND MAX,

Fig. 6.

Schematic diagram showing important synoptic

features that can lead to the formation of a frontal

type,

{from Chappell,

quasi-stationary mesoscale convective system.
1984).



8. Use of MDR in Estimating Rainfall

In most areas of the country an adequate rainfall reporting
network does not exist for measuring locally heavy rains. Radar
VIP levels reported in the MDR porticon of the radar observation
may be used to estimate the rainfall. Despite the inherent
inaccuracies of this technique, it is frequently the cnly
information available upon which issuance of a flash flood warning
may be made.

The plotting and addition of MDR values over a period of time
for one or more radars is a laborious task for the forecaster.
Fortunately this task has been automated by the applications
program MDR (Peroutka, 1983). When the program 1is run, rainfall
type, convective or stratiform, must be provided, then graphics
are produced that estimate precipitation over the MDR grid for 1,
3, and & hour time periods. In potential flash ficod situations,
. convective precipitation is specified; experience has shown that
the convective MDR rainfall estimates result in rainfall amounts
approximately double that reported by the rain gage network. If
desired, MDR totals over the grid may be obtained rather than
precipitation estimates. g
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